Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

نویسندگان

  • Shuli Liu
  • Guangming Zhang
  • Jie Zhang
  • Xiangkun Li
  • Jianzheng Li
چکیده

Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodobacter sphaeroides)-chemoheterotrophic bacteria to treat soybean wastewater. Pollutants removal, biomass production and ALA yield in different phases were investigated in together with functional microbial population dynamics. The results showed that proper HRT and OLR increased the photobioreactor performance including pollutants removal, biomass and ALA productions. 89.5% COD, 90.6% TN and 91.2% TP removals were achieved as well as the highest biomass production of 2655mg/L and ALA yield of 7.40mg/g-biomass under the optimal HRT of 60h and OLR of 2.48g/L/d. In addition, HRT and OLR have important impacts on PNSB and total bacteria dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater.

The physical characteristics, microbial activities and kinetic properties of the granular sludge biomass were investigated under the influence of different hydraulic retention times (HRT) along with the performance of the system in removal of color and COD of synthetic textile wastewater. The study was conducted in a column reactor operated according to a sequential batch reactor with a sequenc...

متن کامل

Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells.

Many industries are charged fees based on the organic loads in effluents. Therefore, it can be advantageous to reduce the wastewater strength prior to discharge. We investigated the use of microbial fuel cells (MFCs) to reduce the chemical oxygen demand (COD) of a paper-plant wastewater while at the same time producing electricity in a continuous flow system. At a hydraulic retention time (HRT)...

متن کامل

Biohydrogen Production from Cassava Wastewater in an Anaerobic Fluidized Bed Reactor

The effect of hydraulic retention time (HRT) and organic loading rate (OLR) on biological hydrogen production was assessed using an anaerobic fluidized bed reactor fed with cassava wastewater. The HRT of this reactor ranged from 8 to 1 h (28 to 161 kg COD/m-d). The inoculum was obtained from a facultative pond sludge derived from swine wastewater treatment. The effluent pH was approximately 5.0...

متن کامل

Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and anaerobic filter: study of OLR and HRT optimization in ABR/AF reactors

Background: Slaughterhouse wastewater (SWW) is hardly treated due to the large amount of organic matter, nutrients and suspended solids. These materials are naturally decomposed through biological processes, and then environmental pollution, transmission of pathogens and problems become smelled. Conventional purification methods require high investment costs, high energy consumption and expert ...

متن کامل

Effect of Hydraulic Retention Time on Up-flow Anaerobic Stage Reactor Performance at Constant Loading in the Presence of Antibiotic Tylosin

The present investigation was aimed at determining the impact of the macrolide antibiotic Tylosin in reduced HRT at constant organic loading rate (OLR) by varying feed substrate concentration in an up-flow anaerobic stage reactor (UASR). The antibiotic concentration was maintained at 200 mg.L, at constant OLR of 1.88 kg COD.m.d, by varying feed substrate concentration to the UASR and the HRT wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 210  شماره 

صفحات  -

تاریخ انتشار 2016